If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+25n+24=0
a = 6; b = 25; c = +24;
Δ = b2-4ac
Δ = 252-4·6·24
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-7}{2*6}=\frac{-32}{12} =-2+2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+7}{2*6}=\frac{-18}{12} =-1+1/2 $
| 3(4x-5)+2=0 | | 4.4=2.2x | | 3p*2+10p-8=0 | | 2x^2-12x-24=8 | | 2(y-4)-7y=-28 | | 11+c=8 | | 3n+6=54-9n | | 4x+3(2x-1)=5(x-1)+2 | | a=600(1-0.1)^2 | | 6(y-5)^2=24 | | 8-(2x+3)=4x-49 | | 5x÷3+4.8=17.3 | | 12+4u+u=22+2u | | 90=6(5+2p) | | 4x+8x=2(10+8x)-12(x-9) | | 15=10+5k | | 5=-30-7r | | Q-1.8+1.8=14+1.8q= | | X+.01x=50 | | -96=6(-x-8) | | 4-4(x-4)+2(2x+3)+6=0 | | -96=(-x-8) | | 18n+12=27n=3 | | 4-4(x-4)+2(2x=3)+6=0 | | 12(x+11)=-300 | | 12x+4=3x+x | | 18+9x=12+4x | | 4t-2+(t•t)=6+(t•t) | | (x-8)(42-x)=2x-16 | | 3(3/2y-11/2)+2y=16 | | 60,523+10.75x=20,623+20.25x | | 10x-3=3x-38 |